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Abstract 

Low response may render a probability sample that behaves like a nonprobability sample. Achieving a 

high weighted response rate after a small nonresponse follow-up survey may be misleading due to 

instability in the resulting estimator. Release of many reserve replicate samples helps in reaching the 

target sample size but relies heavily on correct specification of the nonresponse model so that units from 

response-prone domains are appropriately weighted. Use of ad hoc substitution by similar units to offset 

nonresponse is subject to selection bias due to lack of correct selection probabilities. As an alternative, a 

random replacement strategy for unbiased estimation with appropriate selection probabilities along with a 

nonresponse model is proposed based on the idea of reserve samples of size one, which can be viewed as 

follow-ups for nonresponding units. It is a takeoff from the random group method of Rao, Hartley, and 

Cochran (RHC) (1962) for probability-proportional-to-size (PPS) sampling where each stratum is 

randomly split into groups; then a single unit is drawn within each group. In the proposed method, each 

stratum is partitioned further into zones formed after sorting for the purpose of implicit stratification so 

that values of sorting variables deemed as nonresponse predictors are well distributed across zones. The 

number of zones is about half the allocated sample size. Each zone is randomly split into groups as in 

RHC within which replicate samples of size one are selected to obtain a responding unit. This way, 

responding units from almost all zones are obtained, and then weighted estimates from all responding 

groups are combined after adjustments for nonresponding groups and zones, if any. The nonresponse 

adjustment is made through a one-step calibration for nonresponse and poststratification, as the usual two-

step approach is not applicable because, in addition to the information needed about model covariates for 

the rejected units, the first step for nonresponse adjustment requires selection probabilities for each given 

sequence of nonresponding units before obtaining a responding unit within a group, and these 

probabilities are not known. Due to relatively well-distributed responding units over the range of 

covariate values, the calibration for nonresponse is expected to provide robust estimation with respect to 

nonresponse bias even if the model is misspecified. The unit-level response rate remains low and is not 

altered by the new design, but the notion of a group response rate becomes meaningful, which can be 

made high by choosing a suitable number of replicate release within the data collection time frame and 

the budget allowed. Simulation results are presented to illustrate the nonresponse bias reduction property 

of the proposed estimator and the robustness of its mean squared error under misspecified models. 

Key Words: Random group method; reserve sample replicates; unit vs. group response rates; weighted 

response rate; nonresponse follow-up surveys. 

1. Introduction 

High nonresponse is quite common in many surveys (especially with telephone and mail), and concern is 

growing among survey practitioners that a probability sample may behave like a nonprobability sample. 

This problem can be mitigated only marginally using innovations in questionnaire design, interview 

protocol, and incentives. In practice, there are three major approaches to the nonresponse problem, as 

listed below along with their limitations: 
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A. Use of a nonresponse follow-up survey (NRFUS) to increase the weighted response rate, but it may 

be misleading because of the high variability of sampling weights resulting from the fraction of the 

small follow-up subsample (caused by budgetary constraints). This, in turn, makes the estimator quite 

unstable. 

B. Release of many reserve replicate samples helps to reach the target sample size, but this method 

burdens the model-based adjustment for nonresponse bias because the respondents may be 

concentrated more in response-prone domains and not well dispersed over the range of values of 

auxiliary variables used in the model. 

C. Use of ad hoc substitution by similar units to offset nonresponse is subject to selection bias because 

the choice of units for substitution is not based on any random mechanism designed for unbiased 

estimation.  

In view of the preceding concerns about precision and unbiasedness resulting from ways to reach the 

target number of completes, there is clearly a need for an alternative to the traditional method of inflating 

the release sample size to compensate for ineligibility and nonresponse. When faced with a lower number 

of completes than expected, the initial release is typically followed by the release of reserve replicates. 

The NRFUS option is also generally not viable due to cost constraints. A natural alternative is to develop 

ways in which substitution for nonrespondents by similar units can be justified. In this regard, there is 

clearly a need to substratify strata into zones (or deep strata) by good anticipated nonresponse predictor 

variables in addition to the variables used for explicit stratification so that each zone is represented in the 

sample of completes. These zones can be created by using the additional nonresponse predictors as 

sorting variables for implicit stratification, as typically is done in systematic sampling. Both explicit and 

implicit stratification variables are deemed to be correlated with the outcome as well as with the response-

indicator variables. Within each zone, we can use rejective sampling by repeated random draws with 

replacement to obtain a desired sample size of distinct respondents.  

In the above rejective sampling approach, we reject nonrespondents in favor of a respondent in the sense 

that because we do not know in advance the subpopulation of respondents for sampling, we sample from 

the larger known population (of respondents and nonrespondents) and resort to rejection as and when 

necessary. However, in practice, draw-by-draw selection to find an allocated number of responding units 

in each zone would be an onerous task and impractical because of time and budgetary constraints in data 

collection. Moreover, this method will not be conducive to unbiased variance estimation for general 

probability proportional-to-size (PPS) sampling designs. Alternatively, with samples of size one the 

rejective sampling strategy can be implemented relatively easily where replicates correspond to reserve 

releases. This is where the method of random groups comes in; see Rao, Hartley, and Cochran (RHC) 

(1962) and Cochran (1977, pp. 266). This method provides exact unbiased variance estimates for PPS 

designs in addition to a simple approach to implement PPS designs approximately. 

The RHC method was originally developed for providing a simplified PPS selection in which primary 

sampling units (PSUs) in a stratum are split into random groups of about equal size. The number of 

groups corresponds to the desired number of sampled PSUs, and one PSU is drawn at random from 

each group. It is also useful for replacing retiring PSUs with new ones in rotating partially overlapping 

panel surveys. By analogy between a retiring unit and a nonresponding unit, RHC can be adapted to 

replace nonresponding units with responding units. The purpose of this paper is to generalize RHC 
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under the full sample case (i.e., no nonresponding units) to the case of a respondent subsample (which 

may come from a single-stage design with no PSUs) to obtain an unbiased estimate under the joint 

randomization of sampling design and nonresponse model (also known as quasi-randomization) where 

nonrespondents are replaced at random by respondents.  

This problem arose in the context of education surveys in which schools are typically stratified by 

school level, urbanicity, enrollment size, and percentage of students eligible for free or reduced-priced 

lunch; and each stratum is further implicitly stratified by sorting variables such as whether or not it is a 

charter school or Title I school; the percentage of students who are White, non-Hispanic; geographical 

variables; and other variables that may be relevant to the variables of interest in the survey. Here, in the 

first phase, schools are PSUs selected using PPS with student enrollment as size measures, and then 

some schools can be nonrespondents. The second phase units are students or teachers within selected 

schools. In some education surveys, nonresponding schools are substituted by neighboring schools in 

the sorted list within each stratum, and the corresponding selection probabilities are adjusted in an ad 

hoc manner by the new enrollment sizes. The substitution and the associated weight adjustment do not 

have any theoretical justification but do reflect the selection probabilities had the substituted unit been 

drawn in the first place. This ad hoc substitution may not be serious if the nonresponse rate is low; but, 

in recent times, surveys in general are experiencing high nonresponse. 

The proposed method termed randomly split zones (RSZ) for samples of size one partitions each stratum 

into almost equal-sized zones via implicit stratification, where the number of zones is set equal to half the 

allocated stratum target sample size. Random groups of about equal size are then created within zones (or 

deep strata), and one unit is drawn at random from each group along with replacements, if necessary. The 

provisions of proportional allocation of number of zones to the allocated stratum sample size, almost 

equal-sized zones within each stratum, equal-sized groups within each zone, and common sample size of 

one from each group, ensure the RSZ design to be equal probability selection method (EPSEM) within 

each stratum. This helps to control the variability of estimates despite formation of many substrata via 

zones. In Section 2, a brief review of the RHC method is presented along with a motivation for the 

proposed RSZ method. Section 3 contains a description of RSZ, followed by Section 4 on point and 

variance estimates when response probabilities are assumed to be known as well as under the more 

realistic scenario when response probabilities are unknown and estimated from the sample under a 

nonresponse model. Empirical results based on a limited simulation study are presented in Section 5, 

where other EPSEM (simple random sample and systematic random sample) are compared under a 

single-stage unstratified design. Finally, Section 6 contains concluding remarks and a new application of 

RSZ for controlling the sample overlap among multiple cross-sectional surveys. 

2. Background Review and Motivation 

We first review briefly the RHC method for a simplified PPS selection of PSUs. For our purpose, instead 

of splitting strata into random groups, it is more meaningful to split zones into random groups where 

zones (or substrata) partition the strata via implicit stratification. Also, for illustrating RHC, it is sufficient 

to consider a single zone i (out of a total of H zones or substrata), which is randomly split into 

approximately equal-sized groups of PSUs; the number of groups being 𝑛𝑖, the size of the sample 

allocated to zone i. Let 𝑁𝑖 be the size or the number of PSUs for zone i, 𝑁𝑖𝑗 be the size or the number of 

PSUs for the jth random group (j = 1 to 𝑛𝑖 ), and 𝑚𝑖𝑗𝑘 be the PPS size measure for the kth PSU in the jth 
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random group of the ith zone. Now to draw a PPS sample of 𝑛𝑖 PSUs from the ith zone, one PSU 

(denoted by 𝑘𝑖𝑗) is selected using PPS from each group j. The ith zone population total 𝑇𝑦𝑖 ( = ∑ 𝑇𝑦𝑖𝑗
𝑛𝑖
𝑗  = 1 ) 

of the study variable y is estimated by 

 𝑡𝑦𝑖 = ∑ 𝑡𝑦𝑖𝑗
𝑛𝑖
𝑗=1 , where 𝑡𝑦𝑖𝑗 = 𝑦𝑖𝑗𝑘𝑖𝑗 𝜋𝑖𝑗𝑘𝑖𝑗

−1  from the selected PSU 𝑘𝑖𝑗. (2.1) 

and where 𝜋𝑖𝑗𝑘 = 𝑚𝑖𝑗𝑘 𝑚𝑖𝑗+ ⁄ , 𝑚𝑖𝑗+ =  ∑ 𝑚𝑖𝑗𝑘
𝑁𝑖𝑗

𝑘=1 . 

Conditional on a given random split (denote the expectation operator under the first phase randomization 

by 𝐸1), 𝑡𝑦𝑖𝑗 is unbiased for 𝑇𝑦𝑖𝑗 under the second phase randomization of PPS selection (denote the 

expectation operator here by 𝐸2), and, therefore, 𝑡𝑦𝑖 is unbiased for 𝑇𝑦𝑖 under the two phase 

randomization 𝐸12. Moreover, 𝑉1𝐸2(𝑡𝑦𝑖) = 0. Now using PPS results for samples of size one, we have  

 𝑉2(𝑡𝑦𝑖𝑗) =  ∑ (𝑚𝑖𝑗𝑘 𝑚𝑖𝑗+ ⁄ )
𝑁𝑖𝑗

𝑘=1 (𝑦𝑖𝑗𝑘 (𝑚𝑖𝑗+ 𝑚𝑖𝑗𝑘 ⁄ ) − 𝑇𝑦𝑖𝑗)2 

  =  ∑ (𝑚𝑖𝑗𝑘 𝑚𝑖𝑗+ ⁄ )(𝑚𝑖𝑗𝑘′ 𝑚𝑖𝑗+ ⁄ )
𝑁𝑖𝑗

𝑘<𝑘′ (𝑦𝑖𝑗𝑘 (𝑚𝑖𝑗+ 𝑚𝑖𝑗𝑘 ⁄ ) − 𝑦𝑖𝑗𝑘′ (𝑚𝑖𝑗+ 𝑚𝑖𝑗𝑘′ ⁄ ))2 (2.2) 

Since probability of any two units (k, 𝑘′) belonging to the same random group j in the ith zone is 

(𝑁𝑖𝑗 𝑁𝑖⁄ )(𝑁𝑖𝑗 − 1 𝑁𝑖 − 1⁄ ), and denoting it by 𝑝𝑖𝑗, we have the unconditional variance 

𝐸1𝑉2(𝑡𝑦𝑖) = ∑ 𝑝𝑖𝑗
𝑛𝑖
𝑗=1 ∑ (𝑚𝑖𝑗𝑙 𝑚𝑖𝑗+ ⁄ )(𝑚𝑖𝑗𝑙′ 𝑚𝑖𝑗+ ⁄ )

𝑁𝑖
𝑙<𝑙′ (𝑦𝑖𝑗𝑙 (𝑚𝑖𝑗+ 𝑚𝑖𝑗𝑙 ⁄ ) − 𝑦𝑖𝑗𝑙′ (𝑚𝑖𝑗+ 𝑚𝑖𝑗𝑙′ ⁄ ))2  

 =  (∑ 𝑝𝑖𝑗
𝑛𝑖
𝑗=1 ) (∑ 𝑞𝑖𝑙𝑞𝑖𝑙′

𝑁𝑖
𝑙<𝑙′ (

𝑦𝑖𝑙 

𝑞𝑖𝑙
−

𝑦
𝑖𝑙′ 

𝑞𝑖𝑙′
)

2

) 

 = ((∑ 𝑁𝑖𝑗
2𝑛𝑖

𝑗=1 − 𝑁𝑖) 𝑁𝑖(𝑁𝑖 − 1)⁄ ) (∑ 𝑞𝑖𝑙
𝑁𝑖
𝑙=1 (

𝑦𝑖𝑙 

𝑞𝑖𝑙
− 𝑇𝑦𝑖)

2
) (2.3) 

where 𝑞𝑖𝑙 = 𝑚𝑖𝑙 𝑚𝑖+ ⁄ , and the index l corresponds to the index jk in a given zone i. Note that the only 

difference between 𝜋𝑖𝑗𝑘 and 𝑞𝑖𝑗𝑘 is due to different denominators. The minimum value is obtained when 

all the 𝑁𝑖𝑗’s are equal to a common value 𝑁𝑖0. Then the V(𝑡𝑦𝑖) is given by the familiar PPS with 

replacement formula (1/𝑛𝑖) ∑ 𝑞𝑖𝑙
𝑁𝑖
𝑙=1 (

𝑦𝑖𝑙 

𝑞𝑖𝑙
− 𝑇𝑦𝑖)

2
except for the reduction factor (1 − (𝑛𝑖 − 1) (𝑁𝑖 − 1)⁄ ). 

The RHC yields approximate PPS selection probabilities if the total group size measures 𝑚𝑖𝑗+ for 

different groups are approximately equal within a zone i. This slight relaxation in the PPS requirements 

allows for considerable simplicity. In particular, an important property of the RHC method is that V(𝑡𝑦𝑖) 

admits an exact unbiased estimate given by 

 𝑣(𝑡𝑦𝑖) =  ((∑ 𝑁𝑖𝑗
2𝑛𝑖

𝑗=1 − 𝑁𝑖) (𝑁𝑖
2 − ∑ 𝑁𝑖𝑗

2𝑛𝑖
𝑗=1 )⁄ ) (∑ (∑ 𝑞𝑖𝑗𝑘′ 

𝑁𝑖𝑗

𝑘′=1
)

𝑛𝑖
𝑗=1 (

𝑦𝑖𝑗𝑘𝑖𝑗 

𝑞𝑖𝑗𝑘𝑖𝑗

− 𝑡𝑦𝑖)

2

)  (2.4) 
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Where 𝑞𝑖𝑗𝑘 is the same as 𝑞𝑖𝑙 of (2.3), 𝑞𝑖𝑗𝑘 = 𝑚𝑖𝑗𝑘 𝑚𝑖++ ⁄ , and 𝑘𝑖𝑗, as before, is the randomly selected 

PSU from the group 𝑖𝑗. The above results for a single stage design can be generalized to multistage or 

multiphase designs. 

Now we need to generalize RHC to the problem of finding random replacements for nonrespondents 

within zones (or deep strata) where units are similar with respect to explicit and implicit stratification 

variables—these are deemed to be good predictors of nonresponse. Here the underlying design, as in 

RHC, could be unequal probability (PPS) or equal probability design, but there is the additional goal of 

being able to draw alternate units from the random group with known selection probabilities to serve as 

replacements. It is natural to search for respondents within a random group as replacements because units 

within the corresponding zone are similar. This does not imply that nonresponse adjustments would not 

be needed once we have respondents from each group, because, although units are similar, they still 

would have differential response probabilities, and the random replacements within a group are drawn 

until a respondent is obtained subject to a prescribed number of reserve replicates.  

For nonresponse adjustment, we will assume a population response model as in Fay (1991) in which, for a 

given survey, a response indicator 𝑅𝑘 is assigned to each unit k in the universe U which takes the value of 

1 with probability 𝜑𝑘 when the unit is respondent and 0 with probability 1 − 𝜑𝑘 when nonrespondent. It 

is also assumed that given known auxiliary variables (deemed good predictors for response), the 𝑅𝑘′𝑠 are 

independent of the study variables 𝑦𝑘’s. Thus under the joint 𝜋𝜑 −randomization where 𝜋 denotes the 

random sampling mechanism with selection probabilities 𝜋𝑘 for inclusion of the kth unit in the sample, 

and 𝜑 denoting the random response mechanism, we have the standard estimator ∑ 𝑦𝑘𝑘∈𝑈 𝑅𝑘𝐼𝑘/𝜑𝑘𝜋𝑘 

based on the respondent subsample as an unbiased estimator of the population total 𝑇𝑦.  

Now for the proposed generalization of RHC to RSZ, we need to specify the number of equal-sized zones 

partitioning each stratum and the number of equal-sized groups per zone. The number of zones is set 

equal to half the allocated sample size to the stratum so that there are at least two random groups per zone 

needed for variance estimation. The number of random groups per zone depends on the inflated sample 

size based on the anticipated response rate at the sample design stage so that the total number of sample 

cases released in stages (the initial stage and through replicate release) within the data collection 

timeframe match the total number of cases released in one stage under traditional designs. Note that once 

a respondent is obtained from a group, then no further sample replicates are released from that group.  

The number 𝑛𝑖 of groups is determined using a geometric series formula as shown below. For an 

unstratified design, let 𝑛0 be the target number of completes, 𝐻 the number of zones, q the anticipated 

completion rate reflecting unit eligibility and respondent cooperation, and R the number of replicate 

release per group including the initial release, then the constant number 𝑛𝑖 of groups per zone is given by 

𝑛𝑖𝐻(1 − (1 − 𝑞)𝑅)/(1 − (1 − 𝑞)) = 𝑛0/𝑞  

or 𝑛𝑖 = 𝑛0/𝐻(1 − (1 − 𝑞)𝑅)  (2.5) 

In practice, rounding 𝑛𝑖’s up or down for some zones would be needed to deal with noninteger values of 

𝑛𝑖. It may be remarked that the feature of random replacements for nonrespondents within each group 

under RSZ leads to the concept of group response rate which can be made higher depending on the 

number of replicate releases. This is in contrast to the traditional unit-level response rate where the rate 
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level is not under control of the sampler. The feature of higher group response rate helps to make RSZ 

robust to nonresponse model misspecifications—this observation is supported by the empirical study. 

With this motivation, the proposed RSZ design is described in detail in the next section. 

3. RSZ: The Proposed Design 

RSZ(R) can be described in the following steps where R is the number of stages of release. 

Step I: Partition the universe U into strata and allocate sample to each stratum. 

Step II: Partition each stratum further into equal-sized zones after sorting. The number of zones is 

set equal to half the allocated stratum sample size with natural modifications if the stratum 

sample size is odd. 

Step III: Specify the total number R of release (e.g., R = 5) and define equal number 𝑛𝑖 of groups 

per zone within a stratum using the relation 𝑛𝑖 = 𝑛0/𝐻(1 − (1 − 𝑞)𝑅) with natural modifications 

if 𝑛𝑖 is not an integer. 

Step IV: Stagewise release of new reserve samples of size one from remaining nonresponding 

groups from the previous stage until a respondent is drawn or the maximum number of replicate 

release is reached, whichever comes first. . 

As a somewhat realistic but hypothetical example for illustration purposes, consider an unstratified design 

for public school surveys in the United States, with the total number of public schools in the United States 

being about 100,000. In RSZ, approximately equal-sized zones (like deep strata) are created by sorting on 

implicit stratification variables as mentioned in the introduction. Suppose the target sample size of 𝑛0 is 

1,000, so that the total number H of zones is 500 and the zone size is approximately 200 schools. Next, 

each zone is randomly split into groups within which replicate samples of size one are selected. If there is 

no nonresponse, then only two random groups are needed per zone to meet the target sample size and for 

unbiased variance estimation. However, the number 𝑛𝑖 of groups per zone is inflated at the design stage to 

account for the completion rate. For our illustration, we assume a somewhat low completion rate 𝑞 of 

50%. In RSZ, the inflated sample can be released in stages as replicate samples of size one from each 

incomplete random group after interim review of remaining target completes. In practice, the number of 

such releases is constrained by the data collection timeframe and budget.  

Suppose the total number 𝑅 of replicates including the original release feasible in the timeframe is 5. 

Then the number 𝑛𝑖 of groups per zone can be easily obtained using the formula (2.5) as 2.065 for our 

example, which amounts to a total number of 1,033 (i.e., 500 times 2.065) groups. With 1,033 total 

number of groups, 467 zones can be created with each having two groups, and the remaining 33 zones 

with three groups each. (The sampler can randomly select 33 zones out of 500 for assigning the additional 

groups, or assign to the zones that are expected to have low response rates.) Since each zone has 

approximately 200 schools, the number of schools in each of the two groups in the 467 zones is 100 and 

is about 67 schools in each of the three groups in the remaining 33 zones. See Figure 1 for a schematic 

representation of RSZ and Table 1 for stagewise distribution of total released cases, expected number of 

incompletes and completes. It also shows the distribution of completes and incompletes over the five 

release stages when the completion rate is reduced to 30%. The total number of groups in this case 

increases to 1,203, assuming the same number of stages of release; i.e., 5. 
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It might be of interest to note that in RSZ, it is advantageous to release random replicate sample cases in 

stages to the extent possible within the timeframe for data collection in order to obtain completes 

essentially from each and every zone and, as a result, making the final sample representative of the 

population like the initially designed sample. Stagewise release also allows for interim analysis so that in 

the intermediate stages, a random subsample of incomplete groups can be selected for release of 

additional cases in order to reduce excess completes. However, assuming the anticipated response rate 

does not change considerably over the collection period, there is no such advantage under the traditional 

approach because there the sample inflation is not governed by zone representation, Therefore, the 

inflated sample of cases can be released in a single stage such that the target is achieved in expectation. 

This may result in excess or shortage of desired number of completes. If completes are less than desired, 

reserve replicate samples are released; these need to be planned in advance so that they can be integrated 

with the initial sample release for estimation with appropriate selection probabilities. Under RSZ, 

however, there is no such need for advance planning of reserve sample release in view of readily available 

replicate samples of size one from each random group.  

The special case of RSZ with R = 1 (i.e., no replicates, to be denoted by RSZ(1)) may be of interest in 

situations where it is desirable to release all cases in one stage in situations where the survey timeframe 

does not allow for stagewise release. For RSZ(1), the number of zones is, as before, set at half the 

allocated target sample size in the stratum, but the number of random groups per zone is increased so that 

the total number of groups equals the total number of released cases suitably inflated at the design stage. 

Such a design is somewhat similar to the commonly used systematic sampling, as it can take advantage of 

implicit stratification except that, unlike systematic sampling, it can provide unbiased variance estimation. 

Moreover, variance of the RSZ(1) estimator, unlike the case of systematic sampling, necessarily decreases 

with the sample size. In addition, depending on the realized response rate, it provides the option of 

replicate release among nonresponding groups without having any advance planning. 

4. Point and Variance Estimation 

Before discussing point and variance estimation, it would be useful to make a few observations 

underlying the RSZ design when faced with the problem of high nonresponse. 

A. No Nonresponse. For unbiased estimation, random sampling is needed to obtain a representative 

sample of the population. For efficient estimation, often stratification (explicit and implicit) is 

employed using auxiliary variables deemed correlated with key outcome or study variables. In the 

absence of nonresponse; i.e., in the full sample case, and in the absence of noncoverage, there is no 

bias in the usual estimators. However, their efficiency can be further improved by calibration for 

poststratification whereby sampling weights are adjusted so that sample estimates for 

poststratification variables perfectly match the known population totals. This adjustment also has the 

additional benefit of coverage bias reduction if the sampling frame has either over- or undercoverage 

imperfections. Sampling weight calibration for poststratification can be achieved by different 

methods belonging to the class known as generalized raking which includes linear, log linear, and 

their range-restricted versions (Deville and Särndal, 1992) but they give similar results for large 

samples. 

B. Low Nonresponse. In practice, nonresponse is almost always present despite incentives. For this 

reason, the target sample size is inflated based on the anticipated response rate. The realized 
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subsample of respondents is likely to be skewed toward response-prone domains defined by auxiliary 

variables deemed correlated with the response indicator and generally with the study variable. Under 

a nonresponse model, sampling weights are adjusted, but the unbiasedness of estimates under the 

joint sampling design-nonresponse model depends on the correct specification of the model. Although 

the nonresponse model is difficult to validate, the nonresponse bias in the estimate is not expected to 

be serious regardless of model misspecification if the nonresponse rate is low and the model has good 

response predictors. However, if nonresponse is high, the bias could be serious unless the model can 

be correctly specified (Groves, 2006).  

C. High Nonresponse. RSZ provides a new way of replacing nonrespondents at random by selecting a 

responding unit from each group after several draws if necessary. The unconditional selection 

probabilities for the responding unit in a random group regardless of units rejected before is the same 

as the selection probability at the first draw which is easily computable. In RSZ, the nonresponse 

problem is considerably reduced by making several attempts to get a respondent from each group, 

although some groups are likely to remain nonresponding in any given zone. Moreover, despite 

responding units within a zone being similar, units from different responding groups are likely to be 

skewed toward response-prone domains, as different units are likely to have differential response 

probabilities. Nevertheless, with a high group response rate, a relatively high number of zones would 

be represented in the respondent subsample; therefore, after suitable nonresponse adjustments, RSZ is 

expected to be robust to nonresponse model misspecifications. 

D. One-Step Sampling Weight Adjustment for Nonresponse. With RSZ, traditional methods for 

nonresponse adjustment are not applicable because selection of additional units within a group 

depends on whether the previously drawn unit responds or not; hence, their selection probabilities are 

unknown due to unknown response probabilities. However, the calibration method for nonresponse 

adjustment (Folsom and Singh, 2000; see also Kott, 2006, and Särndal, 2007) works with only the 

respondent subsample and population control totals (or their reliable estimates) for the auxiliary 

variables in the model. In this case, since only responding units from each group contribute in the 

estimating equations for model parameters, it is sufficient to work with unconditional selection 

probabilities for responding units from different groups. Thus, if the group response rate for RSZ is 

not too low, there is less dependence on the model for bias adjustment. Moreover, the property “that 

the calibration method adjusts weights so that the estimator with adjusted weights can reproduce 

perfectly the known population totals for model covariates” also contributes to the robustness of the 

RSZ estimator to nonresponse model misspecifications. 

We now derive expressions for point and variance estimates under RSZ. If the response probabilities 𝜑𝑘’s 

are known, then denoting 𝑦𝑘𝑅𝑘/𝜑𝑘 by 𝑧𝑘, the RSZ estimator after the nonresponse adjustment for the 

total 𝑇𝑦𝑖 for zone i is given by 𝑡𝑧𝑖 = ∑ 𝑡𝑧𝑖𝑗
𝑛𝑖
𝑗=1  and its variance 𝑉𝜋|𝜑 about 𝑇𝑧𝑖 is analogous to the 

expression in (2.3) when y is replaced by z. The unconditional variance 𝑉𝜋𝜑(𝑡𝑧𝑖) about 𝑇𝑦𝑖 is given by 

 𝑉𝜋𝜑(𝑡𝑧𝑖) = 𝐸𝜑𝑉𝜋𝜑(𝑡𝑧𝑖) + 𝑉𝜑(𝑇𝑧𝑖)  (4.1) 

where the first term can be unbiasedly estimated analogous to (2.4) and the second term is of much 

smaller order if the total number 𝑛𝑖 of groups in the zone i is much smaller than the population size 𝑁𝑖 

and hence negligible.  
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The point estimator for the total 𝑇𝑧 and its variance readily follow by summing over all zones. For 

variance estimation, at least two respondents per zone are assumed; otherwise, suitable collapsing of 

zones is performed for a conservative variance estimate. Under the more realistic scenario of unknown 

𝜑𝑘’s, the estimating equations for model parameters 𝜆 under a commonly used inverse logit model 

𝜑𝑘
−1(𝜆) = 1 + 𝑒−𝑥𝑘

′ 𝜆 are given by  

 ∑ ∑ (𝑥𝑖𝑗𝑘 𝜋𝑖𝑗𝑘⁄ )
𝑛𝑖𝑟
𝑗=1

𝐻𝑟
𝑖=1 (1 + 𝑒−𝑥𝑖𝑗𝑘

′ 𝜆) =  𝑇𝑥 (4.2) 

where 𝑛𝑖𝑟 denotes the total number of responding groups within zone i, 𝐻𝑟 denotes the total number of 

responding zones, and 𝜋𝑖𝑗𝑘 is defined earlier as in (2.1). The above equations are admissible if the 

sample weighted totals 𝑡𝑥𝑤 of x’s are less than the population totals 𝑇𝑥. This is needed for the 

adjustment factors to be greater than 1. In practice, 𝑡𝑥𝑤 for some x may not be less than 𝑇𝑥 due to 

extreme initial weights, in which case initial smoothing of weights (Singh, Ganesh, and Lin, 2013) can 

be used to overcome this problem as an alternative to weight trimming. For variance estimation, the 

RSZ estimator with estimated 𝜆 can be Taylor linearized, and then the variance estimator discussed 

above for known 𝜑𝑘’s can be used. Alternatively, an improved estimator using a sandwich formula 

(Singh and Folsom, 2000) can be obtained.  

5. Simulation Results 

A limited simulation study was conducted to test performance of RSZ for unstratified designs in relation 

to simple random sampling (SRS) and systematic random sampling (SYS). Using the Common Core of 

Data (CCD) from the School District Finance Survey School Year 2012–13, we considered the total 

federal funding (in millions of dollars) for a school district as the study variable y and the total district 

enrollment (in thousands) as the auxiliary variable x. The CCD has 15,471 school districts with positive 

values of y and x. Due to skewed nature of distributions of y and x, we consider the log transformation and 

assume that the joint distribution of log y and log x is bivariate normal for generation of the finite 

population. The mean and standard deviation of log y and log x were obtained respectively from CCD as 

(-0.302, 1.665) and (-0.124, 1.560) and the correlation as .853. Note that the means of log y and log x 

could be negative due to concavity of the log function. This completely specifies the bivariate normal 

distribution and hence the linear regression of log y on log x. Next, 10,000 values of log x were generated 

and then the corresponding values of log y using the regression model and normal errors. With 10,000 

pairs of values of (y, x), the target parameter 𝑇𝑦 is obtained as 31,435.29 in million dollars and the control 

total 𝑇𝑥 as 31,606.80 in thousand students. The nonresponse was induced via Poisson sampling with 

response probabilities given by a logistic model using x as a covariate. The slope parameter was set to 1, 

while the intercept was set empirically to obtain mean response rates q of .2, .4, .8, respectively 

corresponding to three scenarios of low, medium, and high response rates. For each of the three sampling 

designs, SRS, SYS, and RSZ, three sample sizes n = 100, 200, 400 were considered; these correspond to 

the total number of released cases. Thus, with q =.20, the target number of completes is 20, 40, and 80 

respectively for n = 100, 200, 400. For RSZ, we considered three versions: RSZ(1) which does not allow 

any replications, RSZ(5) which allows for 5 releases, and RSZ(U) with unrestricted number of releases 

within each group—for RSZ(U), the number of groups per zone was specified as 2. The method RSZ(U) 

was included as a reference or benchmark for evaluating performance of other RSZ methods if number of 

replicate releases was not constrained in practice. The nonresponse adjustment was performed under three 
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misspecified models: (a) Simple Hajek-ratio adjustment to ensure sampling weights of respondents sum 

to N, (b) Linear regression model for the adjustment factor which does not necessarily ensure the 

adjustment factor remains positive, and (c) Log linear model for the adjustment factor which ensures the 

adjustment factor remains positive. The correct nonresponse model would have been logistic but was not 

included due to convergence issues because the sample weighted total 𝑡𝑥𝑤 at times was larger than 𝑇𝑥 in 

simulated samples. This problem could have been overcome easily by trimming the extreme initial 

weights or smoothing them under a separate model as in Singh, Ganesh, and Lin (2013) but was not 

pursued, as it was not necessary for the purpose of demonstrating the robustness of RSZ to model 

misspecifications. 

Although none of the nonresponse models was correctly specified, model (c) came closest to the true 

model except that it was not logit linear and had both intercept and slope parameters unknown. Model (b) 

came next except that it was linear, and model (a) ranked last in terms of being close to the true 

nonresponse model because it did not even depend on x. For q = .20 (see Tables 2a, b, and c), with 1,000 

simulated samples from the same finite population, it was found that RSZ(5) and RSZ (U) estimators 

were relatively much less sensitive in terms of relative bias (RB) and relative root mean square error 

(RRMSE) with respect to misspecified models as compared to the other three methods—SRS, SYS, and 

RSZ(1). For model (c), RSZ(U) exhibits very small RB (less than 5%) for all the models because it had 

basically no nonresponding groups due to unconstrained replicate release. The RB for all other methods 

was around 9% for model (c) but increased rapidly for model (b) to around 25% except for RSZ(5) with 

less than 14%; while for model (a), the RB was extremely high (around 250%) except for RSZ(5) with 

around 125%.  

The above results provide support to the heuristic claim that the more respondents in the sample are from 

different domains formed by nonresponse predictors, the less is the bias due to misspecified nonresponse 

models. In other words, despite unit response rate being low, the higher group response rate seems to help 

reduce bias for RSZ. For variance reduction, it is important to have a large number of respondents 

regardless of how well they represent different nonresponse predictor domains. It follows that other 

methods (SRS, SYS, and RSZ(1)) could outperform RSZ(5) in terms of RRMSE when RB is comparable, 

as is the case with model (c), but their performance drastically deteriorated for models (b) and (a). 

However, RSZ(U) continued to outperform RSZ(5) in general. The same pattern followed for q = .40 and 

.80 as seen in Tables 3a, b, and c and 4a, b, and c. The behavior of RSZ(1) was similar to SYS, as 

expected, but in practice it might be preferable in view of its important desirable properties mentioned 

earlier. In this simulation study, it was interesting to find out that SYS and SRS behaved quite similarly. It 

is true that in practice SYS is preferred over SRS due to ease in execution and expected improved 

precision after implicit stratification; however, it does not follow from theoretical considerations that SYS 

necessarily outperforms SRS in terms of variance unless the variation within systematic sample clusters is 

larger than the variation between clusters.  

6. Concluding Remarks and a New Application of RSZ 

In this paper, a generalization of the RHC method for random replacement of nonrespondents in the 

presence of high nonresponse was developed which is different from the purpose originally planned for 

the RHC methodology. The simulation study, although limited, supported the claim based on theoretical 

considerations that the new RSZ design is expected to yield robust estimators with regard to moderate 
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misspecifications of the nonresponse model in terms of bias and mean square error (MSE(. The main 

reason seems to be that it is the high group-response rate that drives the favorable performance of RSZ 

despite the unit-response rate being low. In practice, the less the number of nonresponding groups, the 

more we expect RSZ to be robust to model misspecifications. Groups are defined by randomly splitting 

deep strata (termed zones) within broad design strata such that units within a zone are similar with respect 

to covariates deemed nonresponse predictors with the goal of obtaining a respondent subsample that 

represents almost all zones. This goal is somewhat similar to the use of implicit stratification in the usual 

systematic sampling designs. Based on a generalization of RHC, the feature of samples of size one from 

each group allows for random replacements for nonresponding units. The unconditional selection 

probabilities of responding units from each group do not change, but estimation from RSZ requires 

nonresponse adjustment because response propensity may vary from unit to unit within a group despite 

units being similar by belonging to the same zone. Having the total number of groups close to the target 

sample size and more responding groups due to replicate release is expected to render RSZ robust to 

moderate departures from the true nonresponse model specifications.  

The RSZ methodology is applicable to equal or unequal selection probabilities under general stratified 

multistage cluster designs. For RSZ(1), it provides exactly unbiased variance estimates in the case of full 

response, but for general RSZ, it provides approximate unbiased variance estimates after nonresponse 

adjustments when there are at least two responding groups per zone. It may be noted that having many 

zones or substrata does not increase the unequal weighting effect for RSZ because of its EPSEM design 

feature. The traditional method of nonresponse adjustment based on response propensity classes is not 

applicable for RSZ because selection probabilities for rejected units within a group involve unknown 

response probabilities, but the calibration method for nonresponse adjustment analogous to 

poststratification is easily applicable. The special case of RSZ(1) provides an interesting alternative to the 

commonly used systematic sampling designs, as it can provide an exact unbiased variance estimate and 

ensures the variance of the estimator decreases with the sample size.  

Finally, it may be of interest to consider a possible new and important application of RSZ for controlling 

sample overlap. With cross-sectional multiple surveys and repeated single surveys over time, a natural 

question to consider is how to select PSUs (such as schools in education surveys) at the first phase in a 

coordinated manner across different surveys such that the overlap of PSUs can be controlled cross-

sectionally and also over time. Having such a control would help in distribution of workload in an 

equitable manner across schools and in reducing response burden on any given school in that a school can 

be given the option of time out after having participated in a number of surveys. Also, with any repeated 

survey over time, having a partially overlapping design is especially useful in an efficient estimation of 

trend. The problem of overlap control in sampling is difficult in general even for simple random samples 

because suitable random selection for each survey needs to be maintained for unbiased point and variance 

estimation after the overlap control (see Ernst, Valliant, and Casady, 2000; and Ohlsson, 2000). However, 

it turns out that with RSZ, the overlap control of schools can be implemented easily by considering the 

analogy between nonresponding units and units already in use by other surveys. The basic idea can also 

be extended to the second phase of second stage units within PSUs, such as teacher selection within 

selected schools. With repeated surveys over time, where PSU size measures and stratum sample size 

could change, a Keyfitz-type (1951) rejective sampling can be used with RSZ to retain PSUs over time 

for partial overlap. Further investigation of the application of RSZ to the problem of sample overlap 

control is planned.  



 

American Institutes for Research   Randomly Split Zones for Samples of Size One as Reserve Replicates and 

Random Replacements for Nonrespondents—12 

References 

Cochran, W. G. (1977). Sampling techniques (3rd ed.). New York, NY: Wiley 

Deville, J.-C., & Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of the 

American Statistical Association, 87(418), 376–382. 

Ernst, L., Valliant, R., & Casady, R. J. (2000). Permanent and collocated random number sampling and 

the coverage of births and deaths. Journal of Official Statistics, 16(3), 211–228. 

Fay, R. E. (1991). A design-based perspective on missing data variance. Proceedings of the 1991 Annual 

Research Conference (pp. 429–440). Washington, DC: U.S. Bureau of the Census. 

Folsom, R. E. Jr., & Singh, A. C. (2000). The generalized exponential model for sampling weight 

calibration for a unified approach to nonresponse, poststratification, and extreme weight 

adjustments. In: JSM Proceedings, Survey Research Methods Section (pp. 598–603). Alexandria, 

VA: American Statistical Association. 

Groves, R. M. (2006). Nonresponse rates and nonresponse bias in household surveys. Public Opinion 

Quarterly, 70(5), 646–675. 

Keyfitz, N. (1951). Sampling with probabilities proportionate to size: Adjustments for changes in 

probabilities. Journal of the American Statistical Association, 46(253), 105–109. 

Kott, P. S. (2006). Using calibration weighting to adjust for nonresponse and coverage errors. Survey 

Methodology, 32(2), 133–142. 

Ohlsson, E. (2000). Coordination of PPS samples over time. Proceedings of the Second International 

Conference on Establishment Surveys, June 17–21, 2000, Buffalo, NY (pp. 255–264). 

Alexandria, VA: American Statistical Association. 

Rao, J. N. K., Hartley, H. O., & Cochran, W. G. (1962). On a simple procedure of unequal probability 

sampling without replacement. Journal of the Royal Statistical Society, Series B, 24(2), 482–491. 

Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey Methodology, 

33(2), 99–119. 

Singh, A. C., & Folsom, R. E., Jr. (2000). Bias corrected estimating functions approach for variance 

estimation adjusted for poststratification. In: JSM Proceedings, Survey Research Methods Section 

(pp. 610–615). Alexandria, VA: American Statistical Association. 

Singh, A. C., Ganesh, N., & Lin, Y. (2013). Improved sampling weight calibration by generalized raking 

with optimal unbiased modification. In: JSM Proceedings, Survey Research Methods Section (pp. 

3572–3583). Alexandria, VA: American Statistical Association. 

  



 

American Institutes for Research   Randomly Split Zones for Samples of Size One as Reserve Replicates and 

Random Replacements for Nonrespondents—13 

Figure 1. A Simplified Schematic Representation of the Proposed RSZ Design 

(𝑁 = 100,000, 𝑛0 = 1,000, 𝑅 = 5, 𝑞 = 0.5, 𝑛𝑖 = 2 𝑜𝑟 3)  

 

 

 

 

 

Table 1. Distribution of Number of Released Cases, Expected Incompletes and Completes 

Stage 𝒒 = 𝟓𝟎% 𝒒 = 𝟑𝟎% 

 # Released # Incompletes  # Completes # Released # Incompletes # Completes 

1 1,033 517 516 1,203 842 361 

2 517 259 258 842 589 253 

3 259 130 129 589 412 177 

4 130 65 65 412 288 124 

5 65 33 32 288 202 86 

Total 2,004 1,004 1,000 3,334 2,333 1,001 

 
  

• Construct 500 zones after sorting on implicit stratification variables.  
Each zone size is ~200 schools. 

Zone i:  

• Split each zone at random into 2 or 3 groups. There are 1,033 groups in all, 
and 467 zones have 2 groups with size of 100 schools, while 33 zones 
have 3 groups of size 67. 

Random Group j:  

• One school is selected at random from each group at each stage of 
release. 

School k: 

i =1 i= 2 

=22

i = 500 

 
j=1 j =2 or 3 

𝑘𝑖𝑗

=1 



 

American Institutes for Research   Randomly Split Zones for Samples of Size One as Reserve Replicates and 

Random Replacements for Nonrespondents—14 

Table 2a. Comparison of Estimates for Population Totals (q = .20, Model (a)) 

Evaluation 
Criterion 

Expected 
Sample Size 

Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 2.450 2.487 2.576 1.295 0.047 

200 2.478 2.510 2.435 1.246 0.010 

400 2.425 2.443 2.447 1.335 0.036 

RRMSE 

100 2.997 2.986 3.184 2.134 0.823 

200 2.777 2.741 2.681 1.837 0.457 

400 2.565 2.534 2.553 1.693 0.347 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 

Table 2b. Comparison of Estimates for Population Totals (q = .20, Model (b)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 0.232 0.239 0.197 0.133 0.045 

200 0.259 0.280 0.265 0.138 0.044 

400 0.368 0.338 0.350 0.138 0.029 

RRMSE 

100 1.087 1.024 1.080 0.637 0.501 

200 0.863 0.886 0.880 0.469 0.354 

400 0.788 0.792 0.793 0.436 0.264 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 

 

Table 2c. Comparison of Estimates for Population Totals (q = .20, Model (c)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 0.091 0.074 0.092 0.087 0.046 

200 0.084 0.103 0.101 0.097 0.042 

400 0.092 0.089 0.095 0.087 0.029 

RRMSE 

100 0.345 0.326 0.373 0.418 0.511 

200 0.240 0.255 0.259 0.303 0.354 

400 0.185 0.173 0.181 0.217 0.265 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 
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Table 3a. Comparison of Estimates for Population Totals (q = .40, Model (a)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 1.060 1.081 1.060 0.263 0.022 

200 1.069 1.093 1.078 0.280 -0.001 

400 1.046 1.058 1.075 0.270 0.015 

RRMSE 

100 1.381 1.355 1.321 0.716 0.556 

200 1.241 1.224 1.222 0.551 0.358 

400 1.132 1.112 1.140 0.417 0.245 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling . 

Table 3b. Comparison of Estimates for Population Totals (q = .40, Model (b)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 0.116 0.120 0.112 0.040 0.027 

200 0.115 0.137 0.114 0.050 0.019 

400 0.163 0.152 0.159 0.047 0.019 

RRMSE 

100 0.383 0.367 0.361 0.306 0.357 

200 0.310 0.327 0.315 0.235 0.276 

400 0.304 0.304 0.308 0.172 0.199 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 

 

Table 3c. Comparison of Estimates for Population Totals (q = .40, Model (c)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 0.072 0.073 0.080 0.039 0.026 

200 0.072 0.081 0.073 0.046 0.019 

400 0.078 0.078 0.081 0.043 0.019 

RRMSE 

100 0.213 0.221 0.226 0.306 0.359 

200 0.160 0.165 0.162 0.232 0.278 

400 0.129 0.126 0.131 0.168 0.200 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 
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Table 4a. Comparison of Estimates for Population Totals (q = .80, Model (a)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 0.202 0.203 0.221 0.010 -0.004 

200 0.204 0.210 0.195 -0.007 -0.004 

400 0.191 0.195 0.187 0.007 -0.002 

RRMSE 

100 0.500 0.454 0.530 0.360 0.331 

200 0.387 0.342 0.359 0.223 0.233 

400 0.292 0.257 0.271 0.159 0.160 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 

 

Table 4b. Comparison of Estimates for Population Totals (q = .80, Model (b)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 0.044 0.027 0.028 0.027 0.026 

200 0.021 0.041 0.031 0.007 0.012 

400 0.034 0.034 0.029 0.005 0.002 

RRMSE 

100 0.229 0.212 0.240 0.282 0.261 

200 0.155 0.156 0.176 0.184 0.199 

400 0.119 0.105 0.118 0.132 0.130 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 

 

Table 4c. Comparison of Estimates for Population Totals (q = .80, Model (c)) 

Evaluation 
Expected 

Sample Size 
Released 

Sampling Scheme 

SRS SYS RSZ(1) RSZ(5) RSZ(U) 

RB 

100 0.039 0.025 0.027 0.027 0.026 

200 0.019 0.039 0.029 0.006 0.012 

400 0.029 0.031 0.026 0.005 0.001 

RRMSE 

100 0.224 0.211 0.239 0.284 0.263 

200 0.151 0.155 0.173 0.184 0.199 

400 0.113 0.102 0.115 0.132 0.130 

Notes: RB, relative bias; RRMSE, relative root mean square error; RSZ, randomly split zones; SRS, 
simple random sampling; SYS, systematic random sampling. 
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